求函数解析式的六种常用方法

 我来答
wjxvvwjxvv
2022-11-13 · TA获得超过457个赞
知道小有建树答主
回答量:2379
采纳率:100%
帮助的人:37.1万
展开全部

函数解析式的六种常用方法:换元法、配凑法、特殊值法、对称性法、函数性质法、反函数法。

1、换元法

已知复合函数fg(x)的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。

2、配凑法

例:已知f( +1)=x+2,求f(x)的解析式。

解:f( -1= +2 +1-1= -1,f( +1)= -1( +1≥1),将+1视为自变量x,则有f(x)=x2-1(x≥1)。

3、特殊值法

例:设是定义在R上的函数,且满足f(0)=1,并且对任意的实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)函数解析式分析:要f(0)=1,x,y是任意的实数及f(x-y)=f(x)-y(2x-y+1),得到f(x)函数解析式,只有令x=y。

解:令x=y,由f(x-y)=f(x)-y(2x-y+1)得f(0)=f(x)-x(2x-x+1),整理得f(x)=x2+x+1。

4、对称性法

即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式。

5、函数性质法

利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法。

6、反函数法

利用反函数的定义求反函数的解析式的方法。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式