求解,高中数学,圆与直线
求经过点P(6,-4),且被定圆X^2+Y^2=20截得的弦长为6√2的直线的方程求圆心在直线X-Y-4-0上,且经过两圆X^2+Y^2-4X-6-0和X^2+Y^2-4...
求经过点P(6,-4),且被定圆X^2+Y^2=20截得的弦长为6√2的直线的方程
求圆心在直线X-Y-4-0上,且经过两圆X^2+Y^2-4X-6-0和X^2+Y^2-4Y-6=0的交点的圆的方程
需要详细过程,谢谢! 展开
求圆心在直线X-Y-4-0上,且经过两圆X^2+Y^2-4X-6-0和X^2+Y^2-4Y-6=0的交点的圆的方程
需要详细过程,谢谢! 展开
3个回答
展开全部
求经过点P(6,-4),且被定圆X^2+Y^2=20截得的弦长为6√2的直线的方程
解:
此圆为 圆心在原点 ,半径为2√5的圆
截得弦长为6√2
根据勾股定理:圆心到直线的距离为√2
此题目就变成求经过点P(6,-4)的直线,并且原点到此直线的距离为√2
设直线方程为 y+4=k(x-6)
直线方程为 kx-y-6k-4=0
原点到此直线的距离=|-6k-4|/√(k^2+1)=√2
解得:k=-7/17或k=-1
直线方程为:(-7/17)x+y+110/17=0
或者直线方程为:-x+y+10=0
求圆心在直线X-Y-4-0上,且经过两圆X^2+Y^2-4X-6-0和X^2+Y^2-4Y-6=0的交点的圆的方程
x^2+y^2-4x-6=0和x^2+y^-4y-6=0的交点是
4x+6=4y+6
y=x,
2x^2-4x-6=0
x^2-2x-3=0
x=-1,
x=3,
所以交点坐标是(-1,-1)(3,3),
过这两点的圆的圆心在这两点连线段的垂直平分线上,其方程是
y-1=-(x-1)
y=-x+2
与x-y-4=0的交点是
x=3,y=-1,
就是圆心,
其到(-1,-1)的距离就是半径为4
所以方程是(x-3)^2+(y+1)^2=16
解:
此圆为 圆心在原点 ,半径为2√5的圆
截得弦长为6√2
根据勾股定理:圆心到直线的距离为√2
此题目就变成求经过点P(6,-4)的直线,并且原点到此直线的距离为√2
设直线方程为 y+4=k(x-6)
直线方程为 kx-y-6k-4=0
原点到此直线的距离=|-6k-4|/√(k^2+1)=√2
解得:k=-7/17或k=-1
直线方程为:(-7/17)x+y+110/17=0
或者直线方程为:-x+y+10=0
求圆心在直线X-Y-4-0上,且经过两圆X^2+Y^2-4X-6-0和X^2+Y^2-4Y-6=0的交点的圆的方程
x^2+y^2-4x-6=0和x^2+y^-4y-6=0的交点是
4x+6=4y+6
y=x,
2x^2-4x-6=0
x^2-2x-3=0
x=-1,
x=3,
所以交点坐标是(-1,-1)(3,3),
过这两点的圆的圆心在这两点连线段的垂直平分线上,其方程是
y-1=-(x-1)
y=-x+2
与x-y-4=0的交点是
x=3,y=-1,
就是圆心,
其到(-1,-1)的距离就是半径为4
所以方程是(x-3)^2+(y+1)^2=16
展开全部
画出图,设直线为y=kx +b
代P(6,-4)→-4=6k+b①
圆心到直线距离由勾股定理
→d=|b|/√(1 +k²)|=√(r²-3√2²)
→b²/2=1 +k²②
①②→k=…,b=…
(2):两圆联立→x=y
求出交点为A(3,3),B(-1,-1),AB中点D(1,1)
那么AB的垂直平分线:y=-x
那么与x-y-4=0的交点即为圆心
→圆心C(2,-2)
→r=AC=CB=√10
→(x-2)²+(y+2)²=10
代P(6,-4)→-4=6k+b①
圆心到直线距离由勾股定理
→d=|b|/√(1 +k²)|=√(r²-3√2²)
→b²/2=1 +k²②
①②→k=…,b=…
(2):两圆联立→x=y
求出交点为A(3,3),B(-1,-1),AB中点D(1,1)
那么AB的垂直平分线:y=-x
那么与x-y-4=0的交点即为圆心
→圆心C(2,-2)
→r=AC=CB=√10
→(x-2)²+(y+2)²=10
参考资料: 如果您的回答是从其他地方引用,请表明出处
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
11111111111111 正解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询