几何题目
解析:
设△ABC外接圆的半径为R,根据正弦定理,得
AB/sin∠ACB=AC/sin∠ABC=BC/sin∠BAC=2R,
容易知道∠ABC=100°,∠ACB=20°,∠BAC=60°,
∴AB=2Rsin20°,AC=2Rsin100°,BC=2Rsin60°,
根据角平分线定理,得
AE/BE
=CA/BC
=sin100°/sin60°
=sin80°/sin60°,……①
在△BCD中,根据正弦定理,得
CD/sin20°=BC/sin140°=BC/sin40°,
即CD=BCsin20°/sin40°=2Rsin60°sin20°/sin40°
∴AD=AC-BD=2R*[sin100°-(sin60°sin20°/sin40°)]
=2R*[(sin80°sin40°-sin60°sin20°)/sin40°]
∴AD/CD=(sin80°sin40°-sin60°sin20°)/(sin60°sin20°)
∵sin80°sin40°-sin60°sin20°
=2sin80°sin20°cos20°-sin20°(sin80°cos20°-sin20°cos80°)
=2sin80°sin20°cos20°-sin80°sin20°cos20°+sin²20°cos80°
=sin80°sin20°cos20°+sin²20°cos80°
=sin20°(sin80°cos20°+sin20°cos80°)
=sin20°sin100°
=sin20°sin80°
∴AD/CD
=sin20°sin80°/(sin60°sin20°)
=sin80°/sin60°……②
∴由①和②,得
AE/BE=AD/CD
∴DE‖BC……③
∴∠ADE=∠ACB=20°
∵∠BDC=180°-20°-20°=140°,∠ADB=180°-∠BDC=40°,
∴∠DEB=180°-∠ADE-∠BDC=20°
∴∠EDB=∠ADB-∠ADE=20°
∠CED
=180°-∠DEB-∠BDC-(1/2)∠DCB
=10°
谢谢!
附图如下