设函数f(x)=(x-a)2lnx,a∈R,e为自然对数的底数,e=2.7182…(1)如果x=e为函数y=f(x)的极大值点
设函数f(x)=(x-a)2lnx,a∈R,e为自然对数的底数,e=2.7182…(1)如果x=e为函数y=f(x)的极大值点,求a的值;(2)如果函数f(x)在x=e处...
设函数f(x)=(x-a)2lnx,a∈R,e为自然对数的底数,e=2.7182…(1)如果x=e为函数y=f(x)的极大值点,求a的值;(2)如果函数f(x)在x=e处的切线与坐标轴围成的三角形的面积等于2e3,求a的值;(3)在(2)的条件下,当x∈[e,e2]时,求f(x)的最大值和最小值.
展开
展开全部
(1)求导得f'(x)=2(x-a)lnx+
=(x-a)(2ln x+1-
).
因为x=e是f(x)的极值点,所以f'(e)=(e?a)(3?
)=0,解得a=e或a=3e,经检验,a=3e,符合题意.(要有检验过程)
(2)f'(x)=2(x-a)lnx+
,
当x=e时,f'(e)=2(e-a)+
,f(e)=(e-a)2lne=(e-a)2,
所以曲线y=f(x)在x=e处的切线方程为y-(e-a)2=[2(e-a)+
](x-e),
切线与x轴、y轴的交点坐标分别为(
,0),(0,-2e(e-a)),
∴所求面积为
×|
|×|?2e(e?a)|=2e3.
解之得,a=2e.
(3)在(2)的条件a=2e下,
f(x)=(x-2e)2lnx,f'(x)=2(x-2e)lnx+
,
对于x∈[e,2e],有f'(x)<0,∴f(x)在区间[e,2e]上为减函数.
对于x∈[2e,e2],有f'(x)>0,∴f(x)在区间[2e,e2]上为增函数.
∴f(x)max=f(e2)=2e2(e?2)2,f(x)min=f(2e)=0.
(x?a)2 |
x |
a |
x |
因为x=e是f(x)的极值点,所以f'(e)=(e?a)(3?
a |
e |
(2)f'(x)=2(x-a)lnx+
(x?a)2 |
x |
当x=e时,f'(e)=2(e-a)+
(e?a)2 |
e |
所以曲线y=f(x)在x=e处的切线方程为y-(e-a)2=[2(e-a)+
(e?a)2 |
e |
切线与x轴、y轴的交点坐标分别为(
2e2 |
3e?a |
∴所求面积为
1 |
2 |
2e2 |
3e?a |
解之得,a=2e.
(3)在(2)的条件a=2e下,
f(x)=(x-2e)2lnx,f'(x)=2(x-2e)lnx+
(x?2e)2 |
x |
对于x∈[e,2e],有f'(x)<0,∴f(x)在区间[e,2e]上为减函数.
对于x∈[2e,e2],有f'(x)>0,∴f(x)在区间[2e,e2]上为增函数.
∴f(x)max=f(e2)=2e2(e?2)2,f(x)min=f(2e)=0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询