概率论中E(X平方)跟E(X)平方有区别吗?

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

二者是有区别的。

1、离散型是取值乘以对应概率求和,连续型是在积分区间上x乘以密度函数的积分。方差是E(x-Ex)^2=E(x^2)-(Ex)^2,也就是平方的期望减去期望的平方。

2、平方的期望是x^2乘以密度函数求积分,期望的平方是求完期望在算平方。离散型的方差也很明白了。也就是各个取值减去期望后平方在乘以对应的概率。

3、方差是E(x-Ex)^2=E(x^2)-(Ex)^2,也就是平方的期望减去期望的平方。二者不能混为一谈,平方的期望是x^2乘以密度函数求积分。

扩展资料

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 [6] 

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为:

标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。

参考资料来源:百度百科-方差

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式