牛顿-莱布尼茨公式怎么证明?

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

证明过程如下:

设F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,?xi?x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3?)

当Δx很小时:

F(x1)-F(x0)=F’(x1)*Δx

F(x2)-F(x1)=F’(x2)*Δx

??

F(xn)-F(x(n-1))=F’(xn)*Δx

所以:

F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+?+ F’(xn)*Δx

当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)

扩展资料:

牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,平面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。

牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运动物体的路程,计算变力沿直线所做的功以及物体之间的万有引力。

牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式在微分方程,傅里叶变换,概率论,复变函数等数学分支中都有体现。

参考资料来源:百度百科-牛顿-莱布尼茨公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式