数学几何题怎么做

 我来答
小铃铛221
2015-11-21 · TA获得超过3.7万个赞
知道大有可为答主
回答量:7714
采纳率:82%
帮助的人:720万
展开全部
作GH⊥AB,连接EO.
∵EF⊥AB,EG⊥CO,
∴∠EFO=∠EGO=90°,
∴G、O、F、E四点共圆,
所以∠GFH=∠OEG,
又∵∠GHF=∠EGO,
∴△GHF∽△OGE,
∵CD⊥AB,GH⊥AB,
∵GH∥CD,
∴ EO GF = GO GH = CO CD ,
又∵CO=EO,
∴CD=GF.
初中数学几何证明题技巧

一、要审题。
二、要记。
三、要引申。
四、要分析综合法。
五、要归纳总结。
何升荣AM
2015-02-04 · 超过20用户采纳过TA的回答
知道答主
回答量:72
采纳率:0%
帮助的人:40.1万
展开全部
证明:作GH⊥AB,连接EO.
∵EF⊥AB,EG⊥CO,
∴∠EFO=∠EGO=90°,
∴G、O、F、E四点共圆,
所以∠GFH=∠OEG,
又∵∠GHF=∠EGO,
∴△GHF∽△OGE,
∵CD⊥AB,GH⊥AB,
∵GH∥CD,
∴ EO GF = GO GH = CO CD ,
又∵CO=EO,
∴CD=GF.
追答
证明:
∵正方形ABCD,
∴AB=CD,∠BAD=∠CDA=90°,
∵∠PAD=∠PDA=15°,
∴PA=PD,∠PAB=∠PDC=75°,
在正方形内做△DGC与△ADP全等,
∴DP=DG,∠ADP=∠GDC=∠DAP=∠DCG=15°,
∴∠PDG=90°-15°-15°=60°,
∴△PDG为等边三角形(有一个角等于60度的等腰三角形是等边三角形),
∴DP=DG=PG,
∵∠DGC=180°-15°-15°=150°,
∴∠PGC=360°-150°-60°=150°=∠DGC,
在△DGC和△PGC中
DG=PG ∠DGC=∠PGC GC=GC ,
∴△DGC≌△PGC,
∴PC=AD=DC,和∠DCG=∠PCG=15°,
同理PB=AB=DC=PC,
∠PCB=90°-15°-15°=60°,
∴△PBC是正三角形.
证明:作GH⊥AB,连接EO.
∵EF⊥AB,EG⊥CO,
∴∠EFO=∠EGO=90°,
∴G、O、F、E四点共圆,
所以∠GFH=∠OEG,
又∵∠GHF=∠EGO,
∴△GHF∽△OGE,
∵CD⊥AB,GH⊥AB,
∵GH∥CD,
∴ EO GF = GO GH = CO CD ,
又∵CO=EO,
∴CD=GF
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式