证明:(1)若函数y=f(x)是偶函数,则f(x+a)=f(-x-a);(2)若函数y=f(x+a)是偶函数,则f(x+a)

证明:(1)若函数y=f(x)是偶函数,则f(x+a)=f(-x-a);(2)若函数y=f(x+a)是偶函数,则f(x+a)=f(-x+a).... 证明:(1)若函数y=f(x)是偶函数,则f(x+a)=f(-x-a);(2)若函数y=f(x+a)是偶函数,则f(x+a)=f(-x+a). 展开
 我来答
飞机I0306
推荐于2017-09-18 · TA获得超过102个赞
知道答主
回答量:191
采纳率:0%
帮助的人:66.4万
展开全部
证明:(1)∵函数y=f(x)是偶函数,
∴f(-x)=f(x),
令x取x+a,则-x取-(x+a),
∴f[-(x+a)]=f(x+a),
即f(x+a)=f(-x-a);
(2)令g(x)=f(x+a),
∵函数y=g(x)=f(x+a)是偶函数,
∴g(-x)=g(x),
则f(x+a)=f(-x+a).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式