如图,抛物线经过 A (4,0), B (1,0), C (0,-2)三点. (1)求出抛物线的解析式;(2) P 是抛物线上一动点,
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P...
如图,抛物线经过 A (4,0), B (1,0), C (0,-2)三点. (1)求出抛物线的解析式;(2) P 是抛物线上一动点,过 P 作 PM ⊥ x 轴,垂足为 M ,是否存在 P 点,使得以 A , P , M 为顶点的三角形与△ OAC 相似?若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由;(3)在直线 AC 上方的抛物线上有一点 D ,使得△ DCA 的面积最大,求出点 D 的坐标.
展开
小男人揔Z20
2014-09-03
·
超过60用户采纳过TA的回答
关注
(1) (2)存在! P 为(2,1)或(5,-2)或(-3,-14) (3) D (2,1) |
试题分析:(1)∵该抛物线过点 C (0,-2),∴可设该抛物线的解析式为 y = ax 2 + bx -2. 将 A (4,0), B (1,0),代入,得 解之 ∴此抛物线的解析式为 . (2)存在!如图,设 P 点的横坐标为 m ,则 P 点的纵坐标为 , 当1< m <4时, AM =4- m , .又∵∠ COA =∠ PMA =90°, ∴① 当 时,△ PMA ∽△ COA ,即 . 解之 m 1 ="2," m 2 =4(舍去), ∴P(2,1). ② 当 时,△ APM ∽△ CAO ,即 . 解之 m 1 ="4," m 2 =5(均不合题意,舍去) ∴当1< m <4时, P (2,1) 类似地可求出, 当 m >4时, P (5,-2) 当 m <1时, P (-3,-14) 综上所述,符合条件的点 P 为(2,1)或(5,-2)或(-3,-14) (3)如图,设 D 点的横坐标为t(0<t<4),则 D 点的纵坐标为 . 过 D 作 y 轴的平行线交 AC 于 E .由题意,可求得直线 AC 的解析式为: , E 点的坐标为 .∴ = 从而,S △ DAC = =- t 2 +4 t=- ( t -2) 2 +4.∴当 t =2时,△ DAC 面积最大.∴ D (2,1) 点评:本题考查抛物线的知识,要求考生根据抛物线的概念和性质来解本题 |
收起
为你推荐: