已知数列满足a1=-1,a2>a1,|an+1-an|=2^n,若数列{a2n-1}单调递减,数列{a2n}单调递增,则通项公式an=

数学老师讲的略诡异,希望有详细过程... 数学老师讲的略诡异,希望有详细过程 展开
 我来答
dennis_zyp
2015-02-13 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
依题意,数列的奇数项单调减,偶数项单调增, 因为a2>a1, 所以有a2n>a(2n-1)
而a(2n-1)>a(2n+1),
所以也有a2n>a(2n+1)
因此由|a(n+1)-an|=2^n
有:|a(2n)-a(2n-1)|=2^(2n-1), 即a(2n)-a(2n-1)=2^(2n-1)
且: |a(2n+1)-a(2n)|=2^(2n), 即a(2n+1)-a(2n)=-2^(2n)
分别将n=1, 2, ....k代入上两式,得:
a2-a1=2^1
a3-a2=-2^2
a4-a3=2^3
a5-a4=-2^4
.......
a(2k+1)-a(2k)=-2^(2k)
以上各式相加,正负相消,得:a(2k+1)-a1=2^1-2^2+2^3-....-2^(2k)
左边即为a(2k+1)+1,
右边即为首项为2,公比为-2的2k项等比数列求和,其和为2[(-2)^2k-1]/(-2-1)=-2(4^k-1)/3
因此有a(2k+1)=-1-2(4^k-1)/3=-(1+2*4^k)/3
从而由a(2k)=a(2k+1)+2^(2k)=-(1+2*4^k)/3+4^k=(4^k-1)/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式