
初二几何全等题、急~
如图,已知在△ABC中,∠A,∠B的平分线交于点O,AB,BC,AC不相等若BO的延长线交AC于E,CO的延长线交AB于F若∠A=60°,求证OE=OF...
如图,已知在△ABC中,∠A,∠B的平分线交于点O,AB,BC,AC不相等
若BO的延长线交AC于E,CO的延长线交AB于F
若∠A=60°,求证OE=OF 展开
若BO的延长线交AC于E,CO的延长线交AB于F
若∠A=60°,求证OE=OF 展开
2个回答
展开全部
解析:
FO=EO,
证明:
过O作OM⊥BA于M,
过O作ON⊥BC于N,
过C作CM'⊥BA于M',
过B作BN'⊥AC于N',
不妨设∠ABC>∠ACB,
由∠A=60°及BE、CF是角平分线,易得
∠EON
=∠EBN'
=(1/2)∠ABC-(90°-∠A)
=(1/2)∠ABC-30°,
∠FOM
=∠FCM'
=(90°-∠A)-(1/2)∠ACB
=30°-(1/2)∠ACB,
AO也是∠A的平分线,↔OM=ON,
∵∠EON-∠FOM
=(1/2)∠ABC-30°-[30°-(1/2)∠ACB]
=(1/2)(∠ABC+∠ACB)-60°
=(1/2)*(180°-60°)-60°
=0,
∴∠FOM=∠EON,
∴OF
=OM/cos∠FOM
=ON/cos∠EON
=OE
即FO=EO
证毕!
FO=EO,
证明:
过O作OM⊥BA于M,
过O作ON⊥BC于N,
过C作CM'⊥BA于M',
过B作BN'⊥AC于N',
不妨设∠ABC>∠ACB,
由∠A=60°及BE、CF是角平分线,易得
∠EON
=∠EBN'
=(1/2)∠ABC-(90°-∠A)
=(1/2)∠ABC-30°,
∠FOM
=∠FCM'
=(90°-∠A)-(1/2)∠ACB
=30°-(1/2)∠ACB,
AO也是∠A的平分线,↔OM=ON,
∵∠EON-∠FOM
=(1/2)∠ABC-30°-[30°-(1/2)∠ACB]
=(1/2)(∠ABC+∠ACB)-60°
=(1/2)*(180°-60°)-60°
=0,
∴∠FOM=∠EON,
∴OF
=OM/cos∠FOM
=ON/cos∠EON
=OE
即FO=EO
证毕!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |