如图,已知在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(1,0),经过原点的直线交线段AB于点
如图,已知在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(1,0),经过原点的直线交线段AB于点C,过点C作OC的垂线与直线x=1相交于点P,设AC=t,点P的...
如图,已知在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(1,0),经过原点的直线交线段AB于点C,过点C作OC的垂线与直线x=1相交于点P,设AC=t,点P的坐标为(1,y),(1)求点C的坐标(用含t的代数式表示);(2)求y与t之间的函数关系式和t的取值范围;(3)当△PBC为等腰三角形时,直接写出点P的坐标.
展开
展开全部
(1)过点C作MN∥OB,分别交y轴于点M,直线x=1于点N,
∵点A的坐标为(0,1),点B的坐标为(1,0),即OA=OB,
∴∠A=∠ABO=∠ABN=45°,
∵CM⊥y轴,∴AM=CM,CN=BN,
∵AC=t,∴AM=MC=
t(1分),
∴MO=1-
t(1分),
∴点C的坐标为(
t,1-
t)(1分);
(2)∵四边形MOBN为矩形,
∴OM=BN,
∴OM=CN
∵∠MCO+∠NCP=90°,∠MCO+∠MOC=90°
∴∠NCP=∠MOC,
∴△MCO≌△NCP,
∴OC=CP
∴PN=
t,BN=1-
t,
∵点P的坐标为(1,y),
∴y=1?
∵点A的坐标为(0,1),点B的坐标为(1,0),即OA=OB,
∴∠A=∠ABO=∠ABN=45°,
∵CM⊥y轴,∴AM=CM,CN=BN,
∵AC=t,∴AM=MC=
| ||
2 |
∴MO=1-
| ||
2 |
∴点C的坐标为(
| ||
2 |
| ||
2 |
(2)∵四边形MOBN为矩形,
∴OM=BN,
∴OM=CN
∵∠MCO+∠NCP=90°,∠MCO+∠MOC=90°
∴∠NCP=∠MOC,
∴△MCO≌△NCP,
∴OC=CP
∴PN=
| ||
2 |
| ||
2 |
∵点P的坐标为(1,y),
∴y=1?
|