仔细观察下列四个等式1×2×3×4+1=25=5 2 2×3×4×5+1=121=11 2 3×4×5×6+1=361=19 2 4×5×6×7+1=8

仔细观察下列四个等式1×2×3×4+1=25=522×3×4×5+1=121=1123×4×5×6+1=361=1924×5×6×7+1=841=292(1)观察上述计算... 仔细观察下列四个等式1×2×3×4+1=25=5 2 2×3×4×5+1=121=11 2 3×4×5×6+1=361=19 2 4×5×6×7+1=841=29 2 (1)观察上述计算结果,找出它们的共同特征.(2)以上特征,对于任意给出的四个连续正整数的积与1的和仍具备吗?若具备,试猜想,第n个等式应是什么?给出你的思考过程(3)请你从第10个式子以后的式子中,再任意选一个式子通过计算来验证你猜想的结论. 展开
 我来答
松果果和北极熊dc
推荐于2016-08-12 · TA获得超过129个赞
知道答主
回答量:117
采纳率:100%
帮助的人:69.2万
展开全部
(1)都是完全平方数…(3分);

(2)仍具备.也都是完全平方数…(5分);
仔细观察前5个算式与其结果的关系,发现:
1×2×3×4+1=(1×4+1) 2
2×3×4×5+1=(2×5+1) 2
3×4×5×6+1=(3×6+1) 2
4×5×6×7+1=(4×7+1) 2
5×6×7×8+1=(5×8+1) 2

因此,猜想:n(n+1)(n+2)(n+3)+1=[n(n+3)+1] 2 =(n 2 +3n+1) 2
即,第n个等式是:n(n+1)(n+2)(n+3)+1=(n 2 +3n+1) 2 …(8分)

(3)如11×12×13×14+1=24024+1=24025.
(11 2 +3×11+1) 2 =(121+33+1) 2 =155 2 =24025.
∴11×12×13×14+1=(11 2 +3×11+1) 2
猜想正确 …(10分)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式