如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。 小萍同学灵活运用了轴对称知识,将

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。(1)分别以A... 如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。 小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D、C点的对称点分别为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值。 展开
 我来答
手机用户92905
推荐于2016-12-01 · TA获得超过154个赞
知道答主
回答量:104
采纳率:0%
帮助的人:95.9万
展开全部
(1)由翻折变换可得∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°,AE=AD,AF=AD,再结合可得四边形AEGF为矩形,再有AE=AF=AD,即可证得结论;(2)6


试题分析:(1)由翻折变换可得∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°,AE=AD,AF=AD,再结合可得四边形AEGF为矩形,再有AE=AF=AD,即可证得结论;    
(2)由AD=x,根据正方形的性质可得AE=EG=GF=AF=x,即可得到BG=x-2,CG=x-3,BC=2+3=5,再根据勾股定理即可列方程求得结果.
在Rt△BGC中,
解得 (不合题意,舍去)
∴AD=x=6.
(1)∵AD⊥BC,BD=2,DC=3,由翻折变换可知:
∠E=∠ADB=90°,EB=BD=2,CF=CD=3,∠F=∠ADC=90°.
AE=AD,AF=AD
又∵∠BAC=45°,则∠EAF=90°
∵∠E=∠F=∠EAF=90°
∴四边形AEGF为矩形
又∵AE=AF=AD,则矩形AEGF为正方形;      
(2)∵AD=x,则AE=EG=GF=AF=x,又EB=2,CF=3
∴BG=x-2,CG=x-3,BC=2+3=5
在Rt△BGC中,
解得 (不合题意,舍去)
∴AD=x=6.
点评:解答本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式