已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的
已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与...
已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.
展开
1个回答
展开全部
(1)分两种情况讨论.
①当m=0时,方程为x-2=0,x=2.
∴m=0时,方程有实数根.
②当m≠0时,则一元二次方程的根的判别式
△=[-(3m-1)]2-4m(2m-2)
=9m2-6m+1-8m2+8m=m2+2m+1
=(m+1)2≥0,
∴m≠0时,方程有实数根.
故无论m取任何实数时,方程恒有实数根.
综合①②可知,m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根;
(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标,
则x1+x2=
,x1x2=
.
由|x1-x2|=
=
=
=
=|
|.
由|x1-x2|=2,得|
|=2,
∴
=2或
①当m=0时,方程为x-2=0,x=2.
∴m=0时,方程有实数根.
②当m≠0时,则一元二次方程的根的判别式
△=[-(3m-1)]2-4m(2m-2)
=9m2-6m+1-8m2+8m=m2+2m+1
=(m+1)2≥0,
∴m≠0时,方程有实数根.
故无论m取任何实数时,方程恒有实数根.
综合①②可知,m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根;
(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标,
则x1+x2=
3m?1 |
m |
2m?2 |
m |
由|x1-x2|=
(x1+x2)2?4x1x2 |
=
|
=
|
=
|
=|
m+1 |
m |
由|x1-x2|=2,得|
m+1 |
m |
∴
m+1 |
m |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|