(本题满分12分)已知:如图一次函数y= x+1的图象与x轴交于点A,与y轴交于点B;二次函数y= x2+bx+c

(本题满分12分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D... (本题满分12分)已知:如图一次函数y= x+1的图象与x轴交于点A,与y轴交于点B;二次函数y= x2+bx+c的图象与一次函数y= x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由. 展开
 我来答
要懂得真爱344
推荐于2016-01-23 · TA获得超过137个赞
知道答主
回答量:196
采纳率:100%
帮助的人:71.7万
展开全部

(1)y= x2- x+1
(2)
(3)P的坐标为(1,0)或(3,0)

解:(1)将B(0,1),D(1,0)的坐标代入y= x2+bx+c得
得解析式y= x2- x+1……………………………………………………3分
(2)设C(x0,y0),则有
解得 ∴C(4,3).……………………………………………6分
由图可知:S=S△ACE-S△ABD.又由对称轴为x= 可知E(2,0).
∴S= AE·y0- AD×OB= ×4×3- ×3×1= …………………………………8分
(3)设符合条件的点P存在,令P(a,0):

当P为直角顶点时,如图:过C作CF⊥x轴于F.
∵Rt△BOP∽Rt△PFC,∴ .即
整理得a2-4a+3=0.解得a=1或a=3
∴所求的点P的坐标为(1,0)或(3,0)
综上所述:满足条件的点P共有二个………………………………………………………12分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式