已知函数f(x)=kx+1, x≤0log2x, x>0下列是关于函数y=f[f(x)]+1的零点个数的4个判断:①当k>0时,
已知函数f(x)=kx+1,x≤0log2x,x>0下列是关于函数y=f[f(x)]+1的零点个数的4个判断:①当k>0时,有3个零点;②当k<0时,有2个零点;③当k>...
已知函数f(x)=kx+1, x≤0log2x, x>0下列是关于函数y=f[f(x)]+1的零点个数的4个判断:①当k>0时,有3个零点;②当k<0时,有2个零点;③当k>0时,有4个零点;④当k<0时,有1个零点.则正确的判断是( )A.①④B.②③C.①②D.③④
展开
展开全部
由y=f[f(x)]+1=0得f[f(x)]+1=0,即f[f(x)]=-1,
设f(x)=t,则方程f[f(x)]=-1等价为f(t)=-1,
①若k>0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有两个根其中t2<0,0<t1<1,
由f(x)=t2,<0,知此时x有两解,
由f(x)=t1∈(0,1)知此时x有两解,
此时共有4个解,即函数y=f[f(x)]+1有4个零点.
②若k<0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有一个根t1,其中0<t1<1,
由f(x)=t1∈(0,1)知此时x只有1个解,
即函数y=f[f(x)]+1有1个零点.
综上:只有③④正确,
故选:D.
设f(x)=t,则方程f[f(x)]=-1等价为f(t)=-1,
①若k>0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有两个根其中t2<0,0<t1<1,
由f(x)=t2,<0,知此时x有两解,
由f(x)=t1∈(0,1)知此时x有两解,
此时共有4个解,即函数y=f[f(x)]+1有4个零点.
②若k<0,作出函数f(x)的图象如图:
∵f(t)=-1,
∴此时方程f(t)=-1有一个根t1,其中0<t1<1,
由f(x)=t1∈(0,1)知此时x只有1个解,
即函数y=f[f(x)]+1有1个零点.
综上:只有③④正确,
故选:D.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询