I=∮L(x+y)dx?(x?y)dyx2+y2,L为|x|+|y|=1的顺时针方向,则I=( )A.0B.2πC.-2πD.
I=∮L(x+y)dx?(x?y)dyx2+y2,L为|x|+|y|=1的顺时针方向,则I=()A.0B.2πC.-2πD.π...
I=∮L(x+y)dx?(x?y)dyx2+y2,L为|x|+|y|=1的顺时针方向,则I=( )A.0B.2πC.-2πD.π
展开
1个回答
展开全部
取曲线C为圆周x2+y2=
的逆时针方向,并设L+C所围区域为D.
利用格林公式可得,
=
(
?
)dxdy
=
(
?
)dxdy
=0.
又因为
=4
(x+y)dx+(x?y)dy
=4
(?1?1)dxdy
=?8
dxdy
=(?8)×
=-2π,
故
=-
=2π.
故选:B.
1 |
4 |
利用格林公式可得,
∮ |
L+C |
(x+y)dx?(x?y)dy |
x2+y2 |
=
? |
D |
?(?
| ||
?x |
?(
| ||
?y |
=
? |
D |
x2?2xy?y2 |
(x2+y2)2 |
x2?2xy?y2 |
(x2+y2)2 |
=0.
又因为
∮ |
C |
(x+y)dx+(x?y)dy |
x2+y2 |
=4
? |
C |
=4
? | ||
x2+y2≤
|
=?8
? | ||
x2+y2≤
|
=(?8)×
π |
4 |
=-2π,
故
∮ |
(x+y)dx+(x?y)dy |
x2+y2 |
=-
∮ |
C |
(x+y)dx+(x?y)dy |
x2+y2 |
=2π.
故选:B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询