线性代数中如何求非齐次方程组的特解

帐号已注销
2019-01-05 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.9万
展开全部

1、列出方程组的增广矩阵

做初等行变换,得到最简矩阵。

2、利用系数矩阵和增广矩阵的秩:

判断方程组解的情况,R(A)=R(A,b)=3<4。所以,方程组有无穷解。

3、将第五列作为特解:

第四列作为通解,得到方程组的通解,过程如下图:

扩展资料:

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于  ,即可写出含n-r个参数的通解。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)

微分方程中有两个地方用到“齐次”的叫法:

1、形如  的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如  都算是二次项,而  算0次项,方程  中每一项都是0次项,所以是“齐次方程”。

2、形如  (其中p和q为关于x的函数)的方程称为“齐次线性方程”,这里“线性”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次)。

“齐次”是指方程中没有自由项(不包含y及其导数的项),方程  就不是“齐次”的,因为方程右边的项x不含y及y的导数,因而就要称为“非齐次线性方程”。

另外在线性代数里也有“齐次”的叫法,例如  称为二次齐式,即二次齐次式的意思,因为f中每一项都是关于x、y的二次项。

上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
Dilraba学长
高粉答主

2019-02-28 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411067

向TA提问 私信TA
展开全部

1、列出方程组的增广矩阵

做初等行变换,得到最简矩阵。

2、利用系数矩阵和增广矩阵的秩:

判断方程组解的情况,R(A)=R(A,b)=3<4。所以,方程组有无穷解。

3、将第五列作为特解:

第四列作为通解,得到方程组的通解,过程如下图:

扩展资料

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于。即可写出含n-r个参数的通解。

每一个线性空间都有一个基。

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

线性代数定理:

1、矩阵非奇异(可逆)当且仅当它的行列式不为零。

2、矩阵非奇异当且仅当它代表的线性变换是个自同构。

3、矩阵半正定当且仅当它的每个特征值大于或等于零。

4、矩阵正定当且仅当它的每个特征值都大于零。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gjk628
推荐于2017-10-02 · 超过74用户采纳过TA的回答
知道答主
回答量:167
采纳率:0%
帮助的人:140万
展开全部
方程组的解=一个特解+零解
特解就是方程的一个解 也就是使Ax=b的解 如果x是n维向量而r(A)=n,这时x是唯一的
其他时候因为零解有无穷个特解的答案形式也是无穷个,只要找到一个满足方程的解就是特解
追问
取特解时,是先选自由变量为特殊值,然后再算出其他吗?
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式