线性代数中如何求非齐次方程组的特解
1、列出方程组的增广矩阵:
做初等行变换,得到最简矩阵。
2、利用系数矩阵和增广矩阵的秩:
判断方程组解的情况,R(A)=R(A,b)=3<4。所以,方程组有无穷解。
3、将第五列作为特解:
第四列作为通解,得到方程组的通解,过程如下图:
扩展资料:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于 ,即可写出含n-r个参数的通解。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)
微分方程中有两个地方用到“齐次”的叫法:
1、形如 的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如 都算是二次项,而 算0次项,方程 中每一项都是0次项,所以是“齐次方程”。
2、形如 (其中p和q为关于x的函数)的方程称为“齐次线性方程”,这里“线性”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次)。
“齐次”是指方程中没有自由项(不包含y及其导数的项),方程 就不是“齐次”的,因为方程右边的项x不含y及y的导数,因而就要称为“非齐次线性方程”。
另外在线性代数里也有“齐次”的叫法,例如 称为二次齐式,即二次齐次式的意思,因为f中每一项都是关于x、y的二次项。
1、列出方程组的增广矩阵:
做初等行变换,得到最简矩阵。
2、利用系数矩阵和增广矩阵的秩:
判断方程组解的情况,R(A)=R(A,b)=3<4。所以,方程组有无穷解。
3、将第五列作为特解:
第四列作为通解,得到方程组的通解,过程如下图:
扩展资料
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于。即可写出含n-r个参数的通解。
每一个线性空间都有一个基。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
线性代数定理:
1、矩阵非奇异(可逆)当且仅当它的行列式不为零。
2、矩阵非奇异当且仅当它代表的线性变换是个自同构。
4、矩阵正定当且仅当它的每个特征值都大于零。
特解就是方程的一个解 也就是使Ax=b的解 如果x是n维向量而r(A)=n,这时x是唯一的
其他时候因为零解有无穷个特解的答案形式也是无穷个,只要找到一个满足方程的解就是特解
取特解时,是先选自由变量为特殊值,然后再算出其他吗?