(2013?北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P
(2013?北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)...
(2013?北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.
展开
1个回答
展开全部
(1)证明:连接PC.
∵ABCD是正方形,
∴∠ABE=∠ADF=90°,AB=AD.
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴∠BAE=∠DAF,AE=AF.
∴∠EAF=∠BAD=90°.
∵P是EF的中点,
∴PA=
EF,PC=
EF,
∴PA=PC.
又∵AD=CD,PD=PD(公共边),
∴△PAD≌△PCD,(SSS)
∴∠ADP=∠CDP,即DP平分∠ADC;
(2)作PH⊥CF于H点.
∵P是EF的中点,
∴PH=
EC.
设EC=x.
由(1)知△EAF是等腰直角三角形,
∴∠AEF=45°,
∴∠FEC=180°-45°-75°=60°,
∴EF=2x,FC=
x,BE=2-x.
在Rt△ABE中,22+(2-x)2=(
x)2,即x2+4x-8=0,
解得 x1=-2-2
(舍去),x2=-2+2
.
∴PH=-1+
,FD=
(-2+2
∵ABCD是正方形,
∴∠ABE=∠ADF=90°,AB=AD.
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴∠BAE=∠DAF,AE=AF.
∴∠EAF=∠BAD=90°.
∵P是EF的中点,
∴PA=
1 |
2 |
1 |
2 |
∴PA=PC.
又∵AD=CD,PD=PD(公共边),
∴△PAD≌△PCD,(SSS)
∴∠ADP=∠CDP,即DP平分∠ADC;
(2)作PH⊥CF于H点.
∵P是EF的中点,
∴PH=
1 |
2 |
设EC=x.
由(1)知△EAF是等腰直角三角形,
∴∠AEF=45°,
∴∠FEC=180°-45°-75°=60°,
∴EF=2x,FC=
3 |
在Rt△ABE中,22+(2-x)2=(
2 |
解得 x1=-2-2
3 |
3 |
∴PH=-1+
3 |
3 |
3 |