高一数学单调性的题目,请各位大神帮忙

已知F(x)=ax/x2-1求证(1)a>0时,f(x)在(-1,1)上位减函数。(2)a《0时,f(x)在(-1,1)上位增函数。... 已知F(x)=ax/x2-1
求证(1)a>0时,f(x)在(-1,1)上位减函数。
(2)a《0时,f(x)在(-1,1)上位增函数。
展开
370116
高赞答主

2010-09-24 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
解:设-1<x1<x2<1,
f(x1)-f(x2)=ax1/(x1^2-1)-ax2/(x2^-1)=a(x2-x1)(1+x1x2)/[(x1^2-1)(x2^2-1)]
因为x2-x1>0,1+x1x2>0,(x1^-1)<0,(x2^2-1)<0
当a>0时,a(x2-x1)(1+x1x2)/[(x1^2-1)(x2^2-1)]>0,即
f(x1)>f(x2),函数是减函数
当a<0时,a(x2-x1)(1+x1x2)/[(x1^2-1)(x2^2-1)]<0,即
f(x1)<f(x2),函数是增函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式