网上很多人问过这道高数题,求真正的学霸出来教我。 100

设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x).书上证明过程:假若g(x)、h(x)存在,使得f... 设函数f(x)的定义域为(-l,l),证明必存在(-l,l)上的偶函数及奇函数h(x),使得f(x)=g(x)+h(x). 书上证明过程:假若g(x)、h(x)存在,使得f(x)=g(x)+h(x),(1),
且g(-x)=g(x),h(-x)=-h(x)
于是有f(-x)=g(-x)+h(-x)=g(x)-h(x),(2)
利用(1)、(2)式,可以做出g(x)和h(x),这个启发我们做如下证明:
g(x)=[f(x)+f(-x)]/2
h(x)=[f(x)-f(-x)]/2
则 g(x)+h(x)=f(x),
g(-x)=[f(-x)+f(x)]/2=g(x),
h(-x)=[f(-x)-f(x)]/2=h(x).
证毕.
展开
 我来答
03011956
2015-06-28 · TA获得超过1.2万个赞
知道大有可为答主
回答量:5257
采纳率:72%
帮助的人:2728万
展开全部
疑问是什么
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式