已知动圆M与动圆A:(x+3)2+y2=9外切,且与圆B:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程

 我来答
981658554
2013-11-13
知道答主
回答量:28
采纳率:0%
帮助的人:12.5万
展开全部
设(X+3)2+Y2=1的圆心为A,(X-3)2+Y2=81的圆心为B,
则 A(-3,0),B(3,0)
连接PA,PB,设PA交⊙A于C,延长BP交⊙B于D,
则PC=PD=t(=动圆的半径)
于是 PA=1+t,PB=9-t,
从而 PA+PB=10
由椭圆的定义可知这是一个长轴为2a=10,焦距=2c=AB=6
所以a=5,c=3,从而b=4,
动圆圆心P的
为:x^2/25+y^2/16=1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式