怎么验证狄利克雷函数是周期函数
方法:
狄利克雷函数D(x)={1,当x为有理数;0,当x为无理数.}
对任何正有理数T,X+T与X同为有理数或无理数,
故D(X+T)=D(X)
所以,狄利克雷函数是一个以任何正有理数为周期的周期函数。
拓展资料:
一、内容:
1、对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数。不为零的常数T叫做这个函数的周期。
2、事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
二、周期函数的性质:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
验证:
狄利克雷函数D(x)={1,当x为有理数;0,当x为无理数。)对任何正有理数T,X+T与X同为有理数或无理数,故,D(X+T)=D(X);所以,狄利克雷函数是一个以任何正有理数为周期的周期函数。
这个函数的周期性也告诉了我们这样一个事实:周期函数不一定具有最小正周期.因为没有最小的正有理数。
狄利克雷函数是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。
并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
显然,取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数,其周期可以是任意个有理数,所以没有最小正周期。
【拓展内容】
狄利克雷函数(英语:dirichlet function)是一个定义在实数范围上、值域为不连续的函数。狄利克雷函数的图像Y轴以Y轴为对称轴,是一个偶函数;它处处不连续;处处极限不存在;不可积分。这是一个处处不连续的可测函数。
基本性质
1、定义域为整个实数域 R
2、值域为 {0, 1}
3、函数为偶函数
4、无法画出函数图像,但是它的函数图像客观存在
5、以任意正有理数为其周期,无最小正周期(由实数的连续统理论可知其无最小正周期)
分析性质
1、处处不连续
2、处处不可导
3、在任何区间内黎曼不可积
4、函数是可测函数
5、在单位区间 [0,1] 上勒贝格可积,且勒贝格积分值为 0(且任意区间<a,b>以及R上甚至任何R的可测子集上(区间不论开闭和是否有限)上的勒贝格积分值为0 )
对性质5的说明:虽然m(R/Q)=+∞,但在R/Q上有f(x)=0,符合可积条件(说明中Q为有理数集)。
显然,取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数,其周期可以是任意个有理数,所以没有最小正周期。