不定积分怎么求?
不建议采取截止本回答发出时已有的其他回答,下图展示了使用分部积分法计算这个不定积分的正确步骤。
想要计算这个不定积分,我们知道这个f(x)在全区间上都是连续函数,因此f(x)原函数的一定是存在的。
但是,有原函数并不代表它能够用基本初等函数形式来表达。
故我们可以考虑,使用泰勒公式将f(x)进行展开为幂级数,计算其收敛域后再计算它的不定积分。
①使用麦克劳林公式对f(x)=e^(x^2)进行部分展开,可以改写为一个幂级数。
②根据幂级数的收敛域求法:
求①中所得幂级数的收敛半径R:
则①中幂级数的收敛域为I = (-∞,+∞)。
③根据幂级数求和函数的性质:
可以计算问题中的不定积分:
该结果中的幂级数的收敛域与原级数相同,都为I = (-∞,+∞)。
- 例如计算不定积分∫x²3√1-xdx
解:原式=3∫x²√1-x
令√1-x=t
x=1-t²
dx=-2tdt
原式=3∫(1-t²)²t(-2t)dt
=3∫(-2t²+4t^4-2t^6)dt
=-6∫t²dt+12∫t^4dt-6∫t^6dt
=-2t^3+12/5t^5-6/7t^7+c
=-2√(1-x)^3+12/5√(1-x)^5-6/7√(1-x)^7+c。
- 再如不定积分计算过程如下:
∫(1-3x)^6dx
=(-1/3)∫(1-3x)^6d(1-3x)
=-1/3*(1-3x)^7*(1/7)+C
=-1/21*(1-3x)^7+C。
- 不定积分概念
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
- 不定积分计算方法
不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。
需要注意的是不是所有函数都能积分出来,同时各种方法可以用其一也可以多种方法综合应用。
广告 您可能关注的内容 |