讨论函数y=(1/2)^(x^2-3x+2)的单调性?
展开全部
设y=(1/2)^u,u=(x-3/2)²-1/4
y是u的减函数:u↑,y↓;反之,u↓,y↑;
u是x的二次函数,x3/2时x↑,u↑.
故x3/2时x↑,y↓
y在(-∞,3/2)上单增;在(3/2,+∞)单减,5,令u=x^2-3x+2,则y=(1/2)^u,后一个函数为减函数,所以前一个函数的减区间是函数的增区间,增区间为函数的减区间,而前一个是二次函数,开口向上。
函数y=(1/2)^(x^2-3x+2)在(-无穷,3/2)递增,(3/2,+无穷)递减,2,y=2^x在R上是单增函数,所以只需考虑x^2-3x+2单调性。
x^2-3x+2=(x-1.5)^2-0.25,在(负无穷大,1.5)上单减,在(1.5,正无穷大)上单增。
所以y=(1/2)^(x^2-3x+2)在(负无穷大,1.5)上单减,在(1.5,正无穷大)上单增。,2,当x〈1或者x〉2时,y单调递增 当x=1或者x=2时,y没有单调性 当1〈x令y,1,
y是u的减函数:u↑,y↓;反之,u↓,y↑;
u是x的二次函数,x3/2时x↑,u↑.
故x3/2时x↑,y↓
y在(-∞,3/2)上单增;在(3/2,+∞)单减,5,令u=x^2-3x+2,则y=(1/2)^u,后一个函数为减函数,所以前一个函数的减区间是函数的增区间,增区间为函数的减区间,而前一个是二次函数,开口向上。
函数y=(1/2)^(x^2-3x+2)在(-无穷,3/2)递增,(3/2,+无穷)递减,2,y=2^x在R上是单增函数,所以只需考虑x^2-3x+2单调性。
x^2-3x+2=(x-1.5)^2-0.25,在(负无穷大,1.5)上单减,在(1.5,正无穷大)上单增。
所以y=(1/2)^(x^2-3x+2)在(负无穷大,1.5)上单减,在(1.5,正无穷大)上单增。,2,当x〈1或者x〉2时,y单调递增 当x=1或者x=2时,y没有单调性 当1〈x令y,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询