数学哪些教学环节中应用了信息技术

 我来答
啥名字好呢呢呢
2015-10-03 · TA获得超过28.3万个赞
知道顶级答主
回答量:5.9万
采纳率:96%
帮助的人:2.1亿
展开全部
一、现代信息技术环境下的数学教学与传统教学之比较
认识建构观指导下的数学教与学得到了现代信息技术的有力支持,使其有可能从辅助教学手段向学习者的认知工具发展。计算机工具使我们能从与传统方法不同的角度去探讨数学及其教与学。学习者可以形成一种动态过程的观点,对数学的多重表示可以得到更深入的理解。在数学活动中可以获得更为丰富的经验和更加直观具体的概念图像,对于知识的重新组织也提供了更好的条件。
在数学教学中运用信息技术有很多优势,将以前难以用粉笔和黑板解决的问题却很容易解决。利用信息技术可以代替部分数学文字信息的板书,节省了画图与书写的时间,增加课堂密度,提高教与学的效率,使教师、学生有更多时间进行交流。
数学传键旅统教学一般是权威模式的接受教学。教师主导学生的一切,学生的主动性只是体现在他能否顺利按照教师的思路进行解题,教师很少考虑学生的认知过程。利用信息技术充分反映教学思维,使得学生的主体性原则在课堂中得到良好的体现。同时计算机的及时反馈功能在课堂教学中很好运用,可以弥补传统的课堂教学最欠缺的一环,激发学生学习的主动性。又利用几何画板的动态测量功能,让学生通过计算机及时跟踪测量结果,使学生对所学问题确信无疑,学生在动手实践中主动建构了新知识,这是传统教学手段无法实现的一种新的教学方法。
现代信息技术环境下的数学教学,不仅在教学手段上较传统的教学方式有了重要的发展。更重要的是,它促使教师观念上的变化。这体现在尊重学生、深信学生认知活动中的潜力。因而在教学设计上会更接近学习者学习的客观规律,充分调动他们主动参与及自主选择、探索。
信息技术可以提供猜测的学习环境。在传统的数学教学中,寻找某些数学规律时,只能通过极其有限的几个例子让学生去体会和猜想,这种情况下没有老师的指导学生很难猜想到正确的答案。而信息技术下的数学教学便可以克服这种局限。利用计算机的强大计算功能,可以列举很多数据,让学生充分体会其规律,从而可以正确的猜想,接着找到解答的思路。
二、现代信息技术与高中数学教学的应用
(一)运用现代信息技术整合数学课程内容,让教师的“教”活起来,真正体现学生主体思想。
运用现代信息技术,加上教师的精讲与启发,再结合学生的自主探索、质疑、问难和讨论,使学生通过身临其境的直观感受和仔细观察,从而得出正确的结论,改变了过去那种光靠教师“灌”,学生被动接受的形式,有效的激发了学生学习的兴趣;真正体现了学生的主体地位。
1、利用信息技术可以呈现以往教学中难以呈现的课程内容,变抽象的知识为具体、形象的知识。
我们的教学活动要想起到较好的效率,少不了课前的准备,因此在备课过程中要将方方面面的因素都要考虑到,这就更需要教师能熟练把握教材,对前后知识能一体地了解,无论对哪一堂课,教学目标的设计是关键的,随着信息技术的深入,我们不能稿槐凳放弃传统的教学目标,不仅如此,还应该视之为教学目标的重点,当然,除这些传统的东西,还需要加一些有关信息技术的元素与血液。比如说培养学生对信息技术的应用的能力等,在制定好了教学目标之后,应该设计一个好的引入,这就需要媒体的运用,例如,椭圆第一定义的教学,教材通过实验引入概念当然是一种好的方法,但是要从一次实验发现离心率e对椭圆形状的影响很困难,利用几何画板来展示这一实验,保持椭圆的长轴不变,在焦距逐渐缩小的过程中,学生就能清晰感知离心率e对椭圆形状的影响。例如,幂函数图像错综复杂,种类繁多,传统的教学方法是列表、作图,然后进行归纳,费时费力。我在讲授幂函数一节时,作了一次利用几何画板进行探索的教学尝试,效果很好。
我事先找到幂函数的几何画板课件并根据自己的思路进行修改。在课堂上先提出教学目标:
①作出幂函数当指数取不同有理数时的图像,归纳出幂函数图像的种类;
②归纳幂函数性质。
用几何画板画图方便快捷,学生只要说出指数的值,运用课件图像就会立刻出现。一会儿电脑上都出现了五花八门的图像,学生的兴致高涨。很快有同学发现指数为奇、偶数的图像呈现不同类型;接着,又有同学发现分数指数对图像的影响与分数分子、分母的奇偶有关。这样,教师只要稍加引明亮导,学生通过自己的观察、思考,完整地获得了幂函数的性质,而且印象特别深刻,从而较好地达成了教学目标。
2、利用信息技术进行数学实验教学,探究数学问题的本质。
在高中数学里有很多定理、性质、规律和结论,实际上往往都是先通过一定的观察、分析整理得到的。如果直接告诉学生结论,学生在理解上很可能会产生困难,很难接受。可是现在在现代信息技术的基础上,学生通过实践,亲历整个数学探索的过程,使他们处于主体地位,有利于发挥学生的想象空间,对要理解的数学问题必然有相当深刻的认识。例如三角函数图像的教学,过去一般是以教师讲解为主的。教师依次画出y=Asinx、y=sinωx、y=sin(x+φ)的图像,然后通过推理合成函数的图像,再分析这个函数的性质。这样教学,许多学生不但对函数性质的理解感到困难,而且也不太明白为什么要设计这样的认识顺序。我在教学中引入了实验的方法:先为学生准备好演示软件,告诉学生本节课的学习目标是探索当A、ω、?准取不同的值时图像怎样变化,研究它们对函数的周期、取值范围、单调区间的影响;接着让学生对A、ω、?准自由赋值,输入后观察图像的变化;再让学生变换输入这三个值的先后顺序,反复实验、探索。学生通过自己实验、互相交流和探讨,很快发现了规律,并在小组合作学习的基础上经过反复修正,正确写出函数的周期、取值范围和单调区间。特别是,通过实践,他们懂得了在分析若干个参数对函数图像的影响时,应该对各参数分别研究,改变一个参数的值时要保持其他参数的值不变。这样,学生在获得知识的同时,探究的经验越来越丰富,分析归纳能力也得到了有效的培养。这样的探究活动,利用传统教学手段是很难实现的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式