在三角形abc中角abc的对边分别为abc,a等于根号3,且b的二次方+c的二次方=3+bc。 (
在三角形abc中角abc的对边分别为abc,a等于根号3,且b的二次方+c的二次方=3+bc。(1)求角A的大小。(2)求bsinC的最大值。...
在三角形abc中角abc的对边分别为abc,a等于根号3,且b的二次方+c的二次方=3+bc。
(1)求角A的大小。
(2)求bsinC的最大值。 展开
(1)求角A的大小。
(2)求bsinC的最大值。 展开
2个回答
展开全部
a=√3,b^2+c^2=3+bc。
cosA=(b^2+c^2-a^2)/2bc=(3+bc-3)/2bc=bc/2bc=1/2
A=π/3
a/sinA=b/sinB=2R=√3/sin60=2
bsinC=2*sinBsinC=2sinBsin(120-B)
=2sinB(1/2sinB+√3/2cosB)
=(sinB)^2+√3/2*2sinBcosB
=1/2(1-cos2B)+√3/2sin2B
=√3/2sin2B-1/2cos2B+1/2
=sin(2B-π/6)+1/2
B在(0,2π/3)
2B-π/6在(,-π/6,7π/6)
sin(2B-π/6)在(,-π/6,7π/6)上值域为(-1/2,1]
bsinC=sin(2B-π/6)+1/2,值域为(0,3/2]
bsinC的最大值=3/2
cosA=(b^2+c^2-a^2)/2bc=(3+bc-3)/2bc=bc/2bc=1/2
A=π/3
a/sinA=b/sinB=2R=√3/sin60=2
bsinC=2*sinBsinC=2sinBsin(120-B)
=2sinB(1/2sinB+√3/2cosB)
=(sinB)^2+√3/2*2sinBcosB
=1/2(1-cos2B)+√3/2sin2B
=√3/2sin2B-1/2cos2B+1/2
=sin(2B-π/6)+1/2
B在(0,2π/3)
2B-π/6在(,-π/6,7π/6)
sin(2B-π/6)在(,-π/6,7π/6)上值域为(-1/2,1]
bsinC=sin(2B-π/6)+1/2,值域为(0,3/2]
bsinC的最大值=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询