积的运算规律是什么

积的运算规律是什么是几乘几得几的意义... 积的运算规律是什么
是几乘几得几的意义
展开
 我来答
百度网友093d915
高粉答主

2019-07-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:1041
采纳率:100%
帮助的人:48.4万
展开全部

1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍。(N为非0自然数)。

2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。

3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。

4、总结:积的变化规律是指因数的变化所引起的积的变化。如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。一个因数扩大n倍,另一个因数缩小n倍,则积不变。

扩展资料

两个正整数相乘,那么这两个数都叫做积的因数,或称为约数

数学定义  :假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。

事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。

例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。

3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。

一般而言,整数A乘以整数B得到整数C,整数A与整数B都称做整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。                                                                                           

小小芝麻大大梦
高粉答主

2019-07-24 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:979万
展开全部

积的变化规律有以下几条:

1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍。(N为非0自然数)。

2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。

3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。

4、总结:积的变化规律是指因数的变化所引起的积的变化。如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。一个因数扩大n倍,另一个因数缩小n倍,则积不变。

扩展资料:

乘法:

1)乘法交换律:a*b=b*a

2)乘法结合律:a*b*c=(a*b)*c=a*(b*c)

3)乘法分配律:(a+b)*c=a*c+b*c;(a-b)*c=a*c-b*c

除法:

1)商不变的性质即被除数与除数同乘以或同除以一个数(零除外),商不变。

a/b=(a*n)/(b*n)=(a/n)/(b/n)

2)两个数的和(差)除以一个数,可以用这个数分别去除这两个数(在都能整除的情况下),再求两个商的和(差)。

(a+b)/c=a/c+b/c;(a-b)/c=a/c-b/c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2016-04-25
展开全部
设向量a与向量b的夹角为α,
设向量a与向量b的坐标表示分别为(x1,y1),(x2,y2),
那么a·b=|a||b|cosα,这是定义,
a·b=x1x2+y1y2,这是坐标运算法则.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
韦旭华99
高粉答主

2016-04-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.8万
采纳率:85%
帮助的人:5026万
展开全部
  乘法的意义
  求几个相同加数的和的简便运算叫做乘法。
  运算定律
  乘法交换律
  两个数相乘,交换因数的位置,积不变。ab=ba
  乘法结合律
  三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。(ab)c=a(bc)

  分配律是乘法运算的一种简便运算,可用于分数、小数中。
  主要公式为(a+b)c=ac+bc。两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
  分配律的反用:35×37+65×37 =37×(35+65) =37×100 =3700
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式