数列{bn}=2^(n+1)/(2^n-1)[2^(n+2)-1],其前n项和为Tn,证明Tn<8/9.
1个回答
展开全部
设 a(n) = 1/(2^n-1) - 1 / [2^(n+2) - 1]
通分后发现 a(n) = 3*2^n / (2^n-1)[2^(n+2)-1]= 3/2 * b(n)
所以 b(n) = 2/3 * a(n)
T(n) = 2/3 * [ a(1) + a(2) + ... + a(n) ]
= 2/3 * { 1/(2-1) + 1/(4-1) - 1 / [2^(n+1) - 1] - 1 / [2^(n+2) - 1] }
<2/3 * [ 1 + 1/3 ] = 8/9
通分后发现 a(n) = 3*2^n / (2^n-1)[2^(n+2)-1]= 3/2 * b(n)
所以 b(n) = 2/3 * a(n)
T(n) = 2/3 * [ a(1) + a(2) + ... + a(n) ]
= 2/3 * { 1/(2-1) + 1/(4-1) - 1 / [2^(n+1) - 1] - 1 / [2^(n+2) - 1] }
<2/3 * [ 1 + 1/3 ] = 8/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询