展开全部
(x^1/2-y^1/2)/(x^1/2+y^1/2)
分母有理化
=(x^1/2-y^1/2)^2/(x-y)
=(x+y-2x^1/2y^1/2)/(x-y)
=(12-2*3)/(x-y)
=6/(x-y)
x-y=-[(x-y)^2]^1/2(此处取负号,因为x〈y)
=-[(x+y)^2-4xy]^1/2
=-(12^2-4*9)^1/2
=-6根号3
所以(x^1/2-y^1/2)/(x^1/2+y^1/2)
=-1/根号3
分母有理化
=(x^1/2-y^1/2)^2/(x-y)
=(x+y-2x^1/2y^1/2)/(x-y)
=(12-2*3)/(x-y)
=6/(x-y)
x-y=-[(x-y)^2]^1/2(此处取负号,因为x〈y)
=-[(x+y)^2-4xy]^1/2
=-(12^2-4*9)^1/2
=-6根号3
所以(x^1/2-y^1/2)/(x^1/2+y^1/2)
=-1/根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询