
拉伸法测杨氏模量实验中那个量的测量误差对结果影响较大?如何进一步改进?
光杠杆有何优点怎样提高光杠杆测量微小长度变化的灵敏度为什么用逐差法处理本实验数据能减小测量的相对误差具体点加分...
光杠杆有何优点 怎样提高光杠杆测量微小长度变化的灵敏度
为什么用逐差法处理本实验数据能减小测量的相对误差
具体点加分 展开
为什么用逐差法处理本实验数据能减小测量的相对误差
具体点加分 展开
1个回答
展开全部
为了测量细钢丝的微小长度变化,实验中使用了光杠杆放大法,光杠杆的作用是将微小长度变化放大为标尺上的位置变化,通过较易准确测量的长度测量间接求得钢丝伸长的微小长度变化。
利用光杠杆不仅可以测量微小长度变化,也可测量微小角度变化和形状变化。由于光杠杆放大法具有稳定性好、简单便宜、受环境干扰小等特点,在许多生产和科研领域得到广泛应用。
提高光杠杆测量微小长度变化的灵敏度,主要需要增加平面镜到标尺的距离,这样可以增加光杠杆的放大倍数。
测量误差对结果影响较大的量主要是光杠杆常数、钢丝直径、标尺读数,因为这些量的测量相对误差比较大。
当自变量与因变量成线性关系时,对于自变量等间距变化的多次测量,如果用求差平均的方法计算因变量的平均增量,就会使中间测量数据俩两抵消,失去利用多次测量求平均的意义。为了避免这种情况下中间数据的损失,可以用逐差法处理数据。
利用光杠杆不仅可以测量微小长度变化,也可测量微小角度变化和形状变化。由于光杠杆放大法具有稳定性好、简单便宜、受环境干扰小等特点,在许多生产和科研领域得到广泛应用。
提高光杠杆测量微小长度变化的灵敏度,主要需要增加平面镜到标尺的距离,这样可以增加光杠杆的放大倍数。
测量误差对结果影响较大的量主要是光杠杆常数、钢丝直径、标尺读数,因为这些量的测量相对误差比较大。
当自变量与因变量成线性关系时,对于自变量等间距变化的多次测量,如果用求差平均的方法计算因变量的平均增量,就会使中间测量数据俩两抵消,失去利用多次测量求平均的意义。为了避免这种情况下中间数据的损失,可以用逐差法处理数据。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |