2个回答
展开全部
先证lim[f(x)+-g(x)]=limf(x)+-limg(x),再证lim[f(x)/g(x)]=limf(x)/limg(x)=A/B,B不为0。
以下是函数极限的相关介绍:
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。
在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
以上资料参考百度百科——函数极限
2016-10-10
展开全部
先证lim[f(x)+-g(x)]=limf(x)+-limg(x)
由limf(x)=A,limg(x)=B,得到f(x)=A+a,g(x)=B+b,其中a,b为无穷小,于是有f(x)+-g(x)=(A+a)+-(B+b)=(A+-B)+(a+-b)由于无穷小量a和b所以 lim[f(x)+-g(x)]=A+-B=limf(x)+-g(x)极限乘法的证明也类似,楼主可以自己证.
再证lim[f(x)/g(x)]=limf(x)/limg(x)=A/B,B不为0
同样的有f(x)=A+a,g(x)=B+b 设 r=f(x)/g(x)-A/B 即r=(A+a)*(B+b)-A/B=(Ba-Ab)/[B(B+b)]
r看作2个数的乘积,其中Ba-Ab是无穷小,转而证明1/[B(B+b)]在x的某一邻域内有界,即证明了r的极限为0,命题成立.
由于limg(x)=B由极限定理可知 存在x,当x属于u(x)时,|g(x)|>|B|/2,从而|1/g(x)|
由limf(x)=A,limg(x)=B,得到f(x)=A+a,g(x)=B+b,其中a,b为无穷小,于是有f(x)+-g(x)=(A+a)+-(B+b)=(A+-B)+(a+-b)由于无穷小量a和b所以 lim[f(x)+-g(x)]=A+-B=limf(x)+-g(x)极限乘法的证明也类似,楼主可以自己证.
再证lim[f(x)/g(x)]=limf(x)/limg(x)=A/B,B不为0
同样的有f(x)=A+a,g(x)=B+b 设 r=f(x)/g(x)-A/B 即r=(A+a)*(B+b)-A/B=(Ba-Ab)/[B(B+b)]
r看作2个数的乘积,其中Ba-Ab是无穷小,转而证明1/[B(B+b)]在x的某一邻域内有界,即证明了r的极限为0,命题成立.
由于limg(x)=B由极限定理可知 存在x,当x属于u(x)时,|g(x)|>|B|/2,从而|1/g(x)|
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询