在正三角形ABC中,D,E,F分别是,BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于

急急急... 急急急 展开
clvcmv
2010-09-26 · TA获得超过6315个赞
知道小有建树答主
回答量:830
采纳率:0%
帮助的人:1307万
展开全部
此题要先证明:△ABC∽△EFD
证明:
∵△ABC是正三角形
∴∠A=60°
又EF⊥AB
∴∠AEF=90°-60°=30°
又DE⊥AC
∴∠DEF=180°-∠DEC-∠AEF=180°-90°-30°=60°
同理可证:∠EFD=60°,∠EDF=60°
∴△DEF为正三角形
∴△EFD∽△ABC
又RT△AEF中,EF=√3AE/2,AE=2EF/√3
RT△CDE中,DE=√3CE,CE=DE/√3
又DE=EF
∴AC=AE+CE=2EF/√3 +DE/√3=2EF/√3 +EF/√3=√3EF
∴EF=√3AC/3
∴S△EFD/S△ABC=(EF/AC)²=(√3/3)²=1/3
∴△EFD的面积和△ABC的面积之比为1/3
江海大龙王
2010-09-26 · TA获得超过661个赞
知道小有建树答主
回答量:100
采纳率:0%
帮助的人:110万
展开全部
△DEF的面积与△ABC的面积之比等于1/4。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式