![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
大一高数B上问题求解,请给出过程谢谢
展开全部
方程两边对x求导
e^(y^2)*y'=[x^(1/3)-1]*(1/3)*x^(-2/3)
e^(y^2)*[2y*(y')^2+y'']=(1/9)*x^(-4/3)-(2/9)*[x^(1/3)-1]*x^(-5/3)
令y'=0,则[x^(1/3)-1]*(1/3)*x^(-2/3)=0,得驻点x=1
因为y(1)=0,y'(1)=0,y''(1)=1/9>0
所以y(1)=0是函数的极小值
e^(y^2)*y'=[x^(1/3)-1]*(1/3)*x^(-2/3)
e^(y^2)*[2y*(y')^2+y'']=(1/9)*x^(-4/3)-(2/9)*[x^(1/3)-1]*x^(-5/3)
令y'=0,则[x^(1/3)-1]*(1/3)*x^(-2/3)=0,得驻点x=1
因为y(1)=0,y'(1)=0,y''(1)=1/9>0
所以y(1)=0是函数的极小值
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询