高等数学求方向导数题怎么求法

 我来答
云云说教育
2019-10-27 · 教育领域爱好者
云云说教育
采纳数:630 获赞数:403514

向TA提问 私信TA
展开全部

一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:

先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

扩展资料

注意:导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。

appear舞鞋下de
2017-02-07 · TA获得超过264个赞
知道答主
回答量:242
采纳率:0%
帮助的人:36.8万
展开全部
这个得用方向导数的定义来求,αz/αl=lim(t→0+) [f(t,0)-f(0,0)]/t=lim(t→0+) |t|/t=lim(t→0+) t/t=1偏导数:f(x,0)=|x|,在x=0处不可导,所以z对x的偏导数不存在.根据偏导数以及方向导数的定义可知:f(x,y)在(x0,y0)点沿x轴正向也就是向量i=(1,0)方向的方向导数是f(x,y)在(x0,y0)点对x偏导数的右导数(就是求偏导数的那个极限的右极限),沿x轴负向也就是向量-i=(-1,0)方向的方向导数是f(x,y)在(x0,y0)点对x偏导数的左导数的相反数,所以“如果沿x轴正向与负向的方向导数不是互为相反数的关系,则f(x,y)对x的偏导数不存在”
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
习温虢绸
2020-04-08 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:912万
展开全部
注意:沿着梯度方向的函数值变化率最大,且为梯度的模。则此题求出梯度即可迎刃而解,下图供参考:向左转|向右转
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式