2个回答
展开全部
lim(x->0)[(e^x+x)^(1/x)]
=lim(x->0){e^[ln(e^x+x)/x]} (应用对数性质取对数)
=e^{lim(x->0)[ln(e^x+x)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(e^x+1)/(e^x+x)]} (0/0型极限,应用罗比达法则)
=e^[(1+1)/(1+0)]
=e^2
lim(x->0){[(a^x+b^x+c^x)/3]^(1/x)}
=lim(x->0){e^[(ln(a^x+b^x+c^x)-ln3)/x]} (应用对数性质取对数)
=e^{lim(x->0)[(ln(a^x+b^x+c^x)-ln3)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(a^xln│a│+b^xln│b│+c^xln│c│)/(a^x+b^x+c^x)]} (0/0型极限,应用罗比达法则)
=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}
=e^[ln│abc│/3]
=(abc)^(1/3).
=lim(x->0){e^[ln(e^x+x)/x]} (应用对数性质取对数)
=e^{lim(x->0)[ln(e^x+x)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(e^x+1)/(e^x+x)]} (0/0型极限,应用罗比达法则)
=e^[(1+1)/(1+0)]
=e^2
lim(x->0){[(a^x+b^x+c^x)/3]^(1/x)}
=lim(x->0){e^[(ln(a^x+b^x+c^x)-ln3)/x]} (应用对数性质取对数)
=e^{lim(x->0)[(ln(a^x+b^x+c^x)-ln3)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(a^xln│a│+b^xln│b│+c^xln│c│)/(a^x+b^x+c^x)]} (0/0型极限,应用罗比达法则)
=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}
=e^[ln│abc│/3]
=(abc)^(1/3).
展开全部
因为lim ln(e^x+x)^(1/x)=limln(e^x+x)/x ,
limln( e^x+x)~ln(1+x+x)=limln(1+2x)=2x,
则limln(e^x+x)^(1/x)=2,则原式子=e^2
2.
因为 ln(sin1/x+cos1/x)^(x)=ln(sin1/x+cos1/x)/(1/x)
x →∞, 则1/x→∞
则limln(sin1/x+cos1/x)=limln(sin1/x+1)=sin1/x
limln(sin1/x+cos1/x)^(x)=limsin1/x/(1/x)=1
则原式子=e
3, limln(cos2x)^(3/x^2)=lim3ln(1-2sin^2x)/x^2=lim3(-2sin^2x)/x^2
=-6lim(sinx)^2/x^2
=-6
则原式子=e^(-6)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询