何为抽样分布?它在统计推断中有何重要意义
抽样分布也称统计量分布、随机变量函数分布,是指样本估计量的分布。
意义:采用同样的抽样方法和同等的样本量,从同一个总体中可以抽取出许许多多不同的样本,每个样本计算出的样本统计量的值也是不同的。样本统计量也是随机变量,抽样分布则是样本统计量的取值范围及其概率。
其他分布:
统计中用随机变量X的取值范围及其取值概率的序列来描述这个随机变量,称之为随机变量X的概率分布。如果我们知道随机变量X的取值范围及其取值概率的序列,就可以用某种函数来表述X取值小于某个值的概率,即为分布函数:F(X)=P(X≤z)。
例如,一个由N家工业企业组成的总体,X为销售收入。将总体所有企业的销售收入按大小顺序排队,累计出总体中销售收入小于某值x的企业数量并除以总体企业总数N,就可得到总体中销售收入小于x的企业的频率,也即抽取一个销售收入小于x的企业的概率。此频率或概率随着x值不同而变化形成一个序列,形成了销售收入X的概率分布。
总体分布是在总体中X的取值范围及其概率。
样本分布是在样本中X的取值范围及其概率。上例中,如果抽取n个企业作为样本,我们同样可以用这n个销售收入的取值范围及其概率描述其分布,也即样本分布。样本分布也称为经验分布,随着样本容量n的逐渐增大,样本分布逐渐接近总体分布。
2024-08-29 广告
统计量的分布叫抽样分布。统计量的性质以及使用某一统计量作推断的优良性,取决于其分布。所以抽样分布的研究是数理统计中的重要课题。寻找统计量的精确的抽样分布,属于所谓的小样本理论的范围,但是只在总体分布为正态时取得比较系统的结果。对一维正态总体,有三个重要的抽样分布,即ⅹ2分布、t分布和F分布。