f(x)=1/x在x=3的泰勒展开式为?
f(x)=1/x在x=3的泰勒展开式为: ∑(n=0,+∞) (-1)^n/3^(n+1)*(x-3)^n。
解析:
f(x)=1/x
= 1/[(x-3)+3]
= 1/3*1/[1+(x-3)/3]
= 1/3*∑(n=0,+∞) (-1)^n*[(x-3)/3]^n
= ∑(n=0,+∞) (-1)^n/3^(n+1)*(x-3)^n
高等数学中的应用
在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:
(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。
(2)应用泰勒公式可以证明区间上的函数等式或不等式。
(3)应用泰勒公式可以进行更加精密的近似计算。
(4)应用泰勒公式可以求解一些极限。
(5)应用泰勒公式可以计算高阶导数的数值。
f(x)=1/x
= 1/[(x-3)+3]
= 1/3*1/[1+(x-3)/3]
= 1/3*∑(n=0,+∞) (-1)^n*[(x-3)/3]^n
= ∑(n=0,+∞) (-1)^n/3^(n+1)*(x-3)^n
扩展资料:
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为
一个关于(x-x.)多项式和一个余项的和。
公式:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。
= 1/[(x-3)+3]
= 1/3*1/[1+(x-3)/3]
= 1/3*∑(n=0,+∞) (-1)^n*[(x-3)/3]^n
= ∑(n=0,+∞) (-1)^n/3^(n+1)*(x-3)^n
=(1/3)*{1-(x-3)/3+(x-3)^2/3^2+...+(-1)^n*(x-3)^n/3^n};n=0,1,...