高数 可分离变量方程 一阶线性微分方程 齐次微分方程 怎么区分 有什么就是如果一看到就知道是哪种的
1个回答
2017-06-04
展开全部
一阶微分方程的常见形式是y'=f(x,y)的样子。1、如果右边的函数f(x,y)是零次齐次函数,则这种一阶方程称为一阶齐次型方程。k次齐次函数指的是存在一个常数k,使得f(tx,ty)=t^k*f(x,y),比如x+y是一次齐次函数,xy是二次齐次函数。如果k=0,f(x,y)是零次齐次函数,即f(tx,ty)=f(x,y),此时f(x,y)=f(x*1,x*y/x)=f(1,y/x),可写成g(y/x)的结构。所以一阶齐次方程的常见形式是y'=g(y/x)的样子。2、如果右边的函数f(x,y)是关于y的线性函数P(x)y+Q(x),则称微分方程y'=P(x)y+Q(x)为一阶线性方程,与y完全无关的项Q(x)=0时为齐次线性方程,Q(x)≠0时为非齐次线性方程。两者的交叉就是P(x)=a/x,Q(x)=0,其中a为非零常数的时候。
追问
先采纳,我待会再看看
那这题要怎么看。。你写的好复杂。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询