17-x=13.78解方程?

 我来答
小土豆ycm

2023-02-27 · 国家公务员、教育领域创作者
小土豆ycm
采纳数:12154 获赞数:43419

向TA提问 私信TA
展开全部
  • 解:17-x=13.78

    x=17-13.78

    x=3.22


解析:

这是一元一次方程的解答。

  1. 解题步骤:去分母——去括号——移项——合并同类项——等式两边同时除以未知数前面的系数,把系数化为1。

  2. 根据公式:被减数-减数=差,这个公式的变形公式为:

    减数=被减数-差,这里的被减数是17,减数是x,差是13.78,所以可以移项得,

    7-x=13.78

    x=17-13.78

  3. x=17-13.78 ,左边是未知数,右边是常数项。而且未知数x的系数已经是1,所以可以直接计算(17-13.78)的结果。.

  4. 17-13.78 的计算过程如下图所示,所以x结果为3.22。即x=3.22

    (这里需要注意竖式计算草稿的时候,小数点要对齐,不够减的位数向高位借1)


知识拓展:一元一次方程解答

1、合并同类项,将等号同一侧的含有未知数的项和常数项分别合并成一项的过程。

如:2x+3x=5-3,合并同类项之后就是5x=2

2、移项,把等式一边的某一项移到另一边,移项的依据是等式的性质1,目的是把含有未知数的移到同一边把不含未知数的移到另一边。

  • 如:3x-5=2x+3

    3x-5+5=2x+3+5(两边同时加5)

    3x=2x+8

    3x-2x=2x+8-2x(两边同时减2x)

    x=8

3、去括号,把方程中含有的括号去掉的过程。去括号的过程其实就是运用乘法分配律。将括号外的因数与括号内的各项相乘。

相乘的时候需要注意符号变换,当括号外的因数是正数时去掉括号后相应的项无需变号。当括号外的因数是负数时去掉括号后相应的项符号相反。

  • 如:3(x-2)=5 

    3x-6=5 

    3x=11 

    x=11/3 

以上就是这道题的讲解及相关知识介绍了,希望可以帮到你哦~~

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
518姚峰峰

2023-02-19 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
采纳数:50865 获赞数:564248
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。

向TA提问 私信TA
展开全部

17-x=13.78为一元一次方程,解方程过程如下:

17-x=13.78

x=17-13.78

x=3.22

检验:把x=3.22代入方程左边17-x=17-3.22=13.78=右边

所以x=3.22是原方程的解。


一、一元一次方程的解法步骤如下:

1、去分母:在方程两边都乘以各分母的最小公倍数; 

2、去括号:先去小括号,再去中括号,最后去大括号; 

3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边; 

4、合并同类项:把方程化成ax=b(a≠0)的形式;

5、系数化成1:在方程两边都除以未知数的系数a,得到方程的解。

二、应用举例:

某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人?

解:设有a间,总人数7a+6人

7a+6=8(a-5-1)+4

7a+6=8a-44

a=50

即一共有人:7×50+6=356人

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
朵朵老师123
2023-02-18 · 工作原因,不再上线答疑,谢谢同学们信任!
朵朵老师123
采纳数:1143 获赞数:1309

向TA提问 私信TA
展开全部

一、解析

这是一道「小学数学题」知识点在利用「天平平衡原理」去解方程。初步引入「解简易方程」的方法。


二、天平平衡原理

利用天平平衡原理解方程又称为利用等式的性质解方程,即

① 方程两边同时加上或者减去同一个数,方程的解不变 ② 方程两边同时乘或除一个不是0的数,方程的解不变。


三、例题分析

这一导入章节主要有两种形态以及他们变型 第一种 未知数是加数,形如 6.2 + x =10即采用两边同时减去加数中的常数即减去 6.2 化为 x = a (a为常数)的方法去解题


第一种的变形 : 即未知数是加数, 形如 x + 6.2 = 10,即采用两边同时减去加数中常数,即减去 6.2 化为 x = a (a为常数)的方法去解题


第二种 未知数是被减数形如 x - 17 = 2.1即采用方程两边同时加减数, 即方程两边同时加 17,左边得到x,右边得到2.1+17=19.1即得到 x=19.1,化为了x=a (a是常数)的形式,也就得到了方程的解


第二种的变形,即 减数是未知数

如本题,首先两边同时加减数 x,左边变成 17-x+x是17,右边是13.8+x即 17=13.8+x然后左右交换就得到了第一种变形

最后通过方程两边同时减去 13.8,化为 x =a (a是常数)的形式,也就得到了方程的解

综上,所以方程的解是 x = 3.22,具体过程如下

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户

2023-02-21
展开全部

解:17-x=13.78

     x=17-13.78

     x=3.22


方程分为三大类:一般方程、特殊方程和稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程;

形如:a-x =b,a÷x =b这两种方程,我们可以称为特殊方程;

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

对于一般方程,如果方程是加上a,在利用等式的性质求解时,可以在方程两边同时减去a;同样地,如果方程是减去a,在利用等式的性质求解时,可以在方程的两边同时加上a。乘和除也是一样,总结为一句话就是一般方程很简单,具体数字帮你办,加减乘除要相反。

对于特殊方程,减去和除以的都是未知数x。求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,这样方程就变换成了一般方程,总结起来就是特殊方程别犯难,减去除以未知数,加上乘上变一般。

对于稍复杂的方程,可以采用“舍远取近”的方法,意思是离未知数x远的先去掉,离未知数x近的先看成整体保留,通过变换,方程就变得简单,一目了然。总结起来就是若遇稍微复杂点,舍远取近便了然。

当然,还有形如ax+bx=c等形式,能够学会上面这几种,对于学生来说,这些方程就显得轻而易举了。

第一种

x+a=b

x-a=b

ax=b

x÷a=b

此类题型可以在方程的左右两边同时加、减、乘、除相应的数。

示例:

x+3=5

解:x+3-3=5-3

x=2

x-3=2

解:x-3+3=2+3

x=5

3x=6

解:3x÷3=6÷3

x=2

x÷3=3

解:x÷3×3=3×3

x=9

第二种

ax+b=c

ax-b=c

关键是先把ax看成一个整体,明白先在方程两边同时加、减b,然后按第一种方法解方程。

示例:

3x+4=40

解:3x+4-4=40

3x=36

3x÷3=36÷3

x=12

3x-6=9

解:3x-6+6=9+6

3x=15

3x÷3=15÷3

x=5

第三种

a(x-b)=c

a(x+b)=c

这种类型题可以仿照第二种思路,把小括号内的式子看作一个整体,也可以根据乘法分配律将原方程转化为第二种形式的方程。

示例:

2(x-18)=16

解:2(x-18)÷2=16÷2

x-18=8

x-18+18=8+18

x=26

2(x-18)=16

解:2x-36=16

2x-36+36=16+36

2x=52

x=26

第四种

a-x=b

a÷x=b

这种题目的思路是引导学生把方程转化成x+b=a或xb=a的形式,让学生明白本题要在方程两边同时加或乘x,然后按第一种方法计算。

示例:

20-x=9

解:20-x+x=9+x

20=9+x

9+x=20

9+x-9=20-9

x=11

2.1÷x=3

解:2.1÷x×x=3×x

2.1=3×x

3×x=2.1

3×x÷3=2.1÷3

x=0.7

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hbc3193034
2023-02-12 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
x=17-13.78,
x=3.22.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式