高数 一个简单的 全微分 问题 不难。

 我来答
普海的故事
2017-04-08 · TA获得超过3973个赞
知道大有可为答主
回答量:6496
采纳率:0%
帮助的人:919万
展开全部
用极限的ε-N语言定义证明n→∞ lim[√(n²+a)]/n=1?
解:不论预先给定的正数ε怎么小,由∣[√(n²+a)]/n-1∣=∣[√(n²+a)-n]/n∣
=∣a/n[√(n²+a)+n]∣<∣a/n∣<ε,得n>∣a/ε∣,可知存在正整数N=[∣a/ε∣],
当n≧N时不等式∣[√(n²+a)]/n-1∣<ε;故n→∞ lim[√(n²+a)]/n=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式