求第18题详细过程
1个回答
2018-07-10
展开全部
(1)
f(x)=cos(2x-π/3)+2sin(x-π/4)cos(x-π/4) √ π/
=cos(2x-π/3)+sin(2x-π/2)(sin的二倍角公式)
=cos(2x-π/3)+cos2x
=cos2xcosπ/3+sin2xsinπ/3+cos2x
=1/2cos2x+√3/2sin2x+cos2x
=3/2cos2x+√3/2sin2x
=√3(√3/2cos2x+1/2sin2x)
=√3(sin2xcosπ/3+cos2xsinπ/3)
=√3sin(2x+π/3)
所以f(x)的最小正周期为2π/2=π
(2) -π/12≤x≤π/12
-π/6≤2x≤π/6
π/6≤2x+π/3≤π/2
sinx在[π/6,π/2]是递增的,sinπ/6=1/2; sinπ/2=1
所以,f(x)在[-π/12,π/12]的值域为[1/2,1]
f(x)=cos(2x-π/3)+2sin(x-π/4)cos(x-π/4) √ π/
=cos(2x-π/3)+sin(2x-π/2)(sin的二倍角公式)
=cos(2x-π/3)+cos2x
=cos2xcosπ/3+sin2xsinπ/3+cos2x
=1/2cos2x+√3/2sin2x+cos2x
=3/2cos2x+√3/2sin2x
=√3(√3/2cos2x+1/2sin2x)
=√3(sin2xcosπ/3+cos2xsinπ/3)
=√3sin(2x+π/3)
所以f(x)的最小正周期为2π/2=π
(2) -π/12≤x≤π/12
-π/6≤2x≤π/6
π/6≤2x+π/3≤π/2
sinx在[π/6,π/2]是递增的,sinπ/6=1/2; sinπ/2=1
所以,f(x)在[-π/12,π/12]的值域为[1/2,1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询