一道高数题。求详解。如图
展开全部
f'(0) =1
f'(x) +f(x) - ∫(0->x) f(t) dt /(1+x) = 0
(1+x)[f'(x) +f(x) ] =∫(0->x) f(t) dt
两边取导
(1+x)[f''(x) +f'(x) ] +[f'(x) +f(x) ] =f(x)
(1+x)f''(x) +(2+x)f'(x) =0
f''(x) =-[(2+x)/(1+x) ]f'(x)
ln|f'(x)| =-∫ (2+x)/(1+x) dx
=-∫[ 1 + 1/(1+x) ]dx
=-( x+ ln|1+x| ) +C
f'(0) =1
0= -( 0+ ln|1+0| ) +C
C=0
ln|f'(x)| =-( x+ ln|1+x| )
(1+x)f'(x) = e^(-x)
f'(x) =[1/(1+x)]e^(-x)
f'(x) +f(x) - ∫(0->x) f(t) dt /(1+x) = 0
(1+x)[f'(x) +f(x) ] =∫(0->x) f(t) dt
两边取导
(1+x)[f''(x) +f'(x) ] +[f'(x) +f(x) ] =f(x)
(1+x)f''(x) +(2+x)f'(x) =0
f''(x) =-[(2+x)/(1+x) ]f'(x)
ln|f'(x)| =-∫ (2+x)/(1+x) dx
=-∫[ 1 + 1/(1+x) ]dx
=-( x+ ln|1+x| ) +C
f'(0) =1
0= -( 0+ ln|1+0| ) +C
C=0
ln|f'(x)| =-( x+ ln|1+x| )
(1+x)f'(x) = e^(-x)
f'(x) =[1/(1+x)]e^(-x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询