时间序列分析 时间序列分析的基本原理是什么
2024-01-02 · 百度认证:SPSSAU官方账号,优质教育领域创作者
ARIMA模型(移动平均自回归模型),其是最常见的时间序列预测分析方法。利用历史数据可以预测前来的情况。ARIMA模型可拆分为3项,分别是AR模型,I即差分,和MA模型。SPSSAU智能地找出最佳的AR模型,I即差分值和MA模型,并且最终给出最佳模型预测结果,SPSSAU智能找出最佳模型的原理在于利用AIC值最小这一规则,遍历出各种可能的模型组合进行模型构建,并且结合AIC最小这一规则,最终得到最佳模型。
当然,研究人员也可以自行设置AR模型,差分阶数和MA模型,即分别设置自回归阶数p,差分阶数d值和移动平均阶数q,然后进行模型构建。至于自回归阶数p,差分阶数d值和移动平均阶数q值应该设置多少合适,建议研究人员分别使用偏(自)相关图进行分析(SPSSAU也智能提供p值或q值建议),以及使用ADF检验分析得出合适的差分阶数d值(SPSSAU也智能提供最佳差分阶数d值建议)。
ARIMA模型可拆分为3项,分别是AR模型,I即差分,和MA模型。SPSSAU智能地找出最佳的AR模型,I即差分值和MA模型。当然,研究人员如果自行设置AR模型,差分阶数和MA模型,即分别设置自回归阶数p,差分阶数d值和移动平均阶数q,此时SPSSAU则按照研究人员的设置进行模型构建。建议用户直接使用SPSSAU的智能分析即可。
spssau操作如下:
2、特点:简单易行,便于掌握,但准确性差,一般只适用于短期预测。
3、基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。
4、基本思想:根据系统的有限长度的运行记录(观察数据),建立能够比较精确地反映序列中所包含的动态依存关系的数学模型,并借以对系统的未来进行预报。