高等数学 无穷级数求和函数 求过程
2个回答
展开全部
这是个等比级数,公比是x^2,首项是1,当x^2<1时,和函数是1/(1-x^2)。所以幂级数当|x|<1时收敛,和函数是1/(1-x^2);
提出分母1/3,剩下的是2/3的等比数列,求和.其中1-(2/3)^n 在n 趋于无穷时为1.这样等比数列求和公式只剩(2/3)/(1/3)=2 再乘提出的1/3 即为2/3。
扩展资料:
数的敛散性具有很好的特征,即所谓阿贝尔定理:如果幂级数在点x=k处收敛,那么它在区间内的每一点处都绝对收敛;
反之,如果幂级数在点x=k 处发散,那么对于不属于的所有x都发散。上面的定理使得幂函数的收敛域只能是一个开区间,称为幂级数的收敛区间。收敛区间的长度的一半称为收敛半径。应用对于正项级数的比值判别法和根值判别法的极限形式,可以求出幂级数的收敛半径。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询