对称矩阵的行列式计算是否有简便方法?
有。
有 A^-1=A^*/(A)(A)是指矩阵A的行列式。可知:A^*=(A)A^-1,因此只要求出矩阵A的行列式和A的逆矩阵就可以求出其伴随矩阵。把一个m*n矩阵的行,列互换得到的n*m矩阵,称为A的转置矩阵。矩阵转置的运算律:1.(A')'=A 2.(A+B)'=A'+B' 3.(kA)'=kA'(k为实数) 4.(AB)'=B'A'
若矩阵A满足条件A=A',则称A为对称矩阵,由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等.即aij=aji,对任意i,j都成立。对于任何方形矩阵X,X+XT是对称矩阵。A为方形矩阵是A为对称矩阵的必要条件。对角矩都是对称矩阵。
两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
若对称矩阵A的每个元素均为实数,A是Hermite矩阵。一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。
有。
有 A^-1=A^*/(A)(A)是指矩阵A的行列式。可知:A^*=(A)A^-1,因此只要求出矩阵A的行列式和A的逆矩阵就可以求出其伴随矩阵。把一个m*n矩阵的行,列互换得到的n*m矩阵,称为A的转置矩阵。
矩阵转置的运算律:
1、(A')'=A
2、(A+B)'=A'+B'
3、(kA)'=kA'(k为实数)
4、(AB)'=B'A'
若矩阵A满足条件A=A',则称A为对称矩阵,由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等。即aij=aji,对任意i、j都成立。对于任何方形矩阵X、X+XT是对称矩阵。A为方形矩阵是A为对称矩阵的必要条件。对角矩都是对称矩阵。
扩展资料:
两个对称矩阵的乘积是一个对称矩阵当且仅当两个矩阵的乘积是可交换的。两个实对称矩阵的乘法是可交换的当且仅当它们的特征空间相同时。
每一个实方阵都可以写成两个实对称矩阵的乘积,每一个复合矩阵都可以写成两个复对称矩阵的乘积。
如果对称矩阵A的每个元素都是实数,则A为Hermite矩阵。当且仅当所有元素都为零时,矩阵是对称的和斜对称的。