∫(0,π/3)xcos3xdx=?请帮我看下解题过程对吗
2个回答
展开全部
∫(0->π/3) xcos3x dx
=(1/3)∫(0->π/3) x dsin3x
=(1/3)[ x.sin3x]|(0->π/3) - (1/3)∫(0->π/3) sin3x dx
=0 + (1/9)[ cos3x]|(0->π/3)
=-2/9
=(1/3)∫(0->π/3) x dsin3x
=(1/3)[ x.sin3x]|(0->π/3) - (1/3)∫(0->π/3) sin3x dx
=0 + (1/9)[ cos3x]|(0->π/3)
=-2/9
追问
没看懂
追答
∫(0->π/3) xcos3x dx
/ (1/3)dsin3x = cos3x dx
=(1/3)∫(0->π/3) x dsin3x
/ 分部积分 ∫ udv = uv - ∫ v du , u= x , v= sin3x
=(1/3)[ x.sin3x]|(0->π/3) - (1/3)∫(0->π/3) sin3x dx
=0 + (1/9)[ cos3x]|(0->π/3)
=-2/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询