盈亏问题怎么做?
先解释盈和亏,盈就是多,亏就是少,(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
盈亏平衡点(Break Even Point,简称BEP)又称零利润点、保本点、盈亏临界点、损益分歧点、收益转折点。通常是指全部销售收入 等于全部成本时(销售收入线与总成本线的交点)的产量。
以盈亏平衡点的界限,当销售收入高于盈亏平衡点时企业盈利,反之,企业就亏损。盈亏平衡点可以用销售量来表示,即盈亏平衡点的销售量;也可以用销售额来表示,即盈亏平衡点的销售额。
盈亏平衡点分析利用成本的固定性质和可变性质来确定获利所必需的产量范围。如果我们能够将全部成本划分为两类:一类随产量而变化,另一类不随产量而变化,就可以计算出给定产量的单位平均总成本。半可变成本能够分解为固定成本和可变成本。
但是,对不同的产量平均固定成本时,单位成本的固定成本是不相同的,因而这种单位产品平均成本的概念,只对个所计算的产量值是正确的。
因此从概念上来看,将固定成本看作成本汇集总额是有益的,此汇集总额在扣除可变成本之后,必须被纯收入所补偿,这种经营才能产生利润,如果扣除可变成本之后的纯收入刚好等于固定成本的汇集总额,那么这一点或是这样的销售水平称为盈亏平衡点。
精确地来说,正是因为在销售进程的这一点上,总的纯收入刚好补偿了总成本(包括固定成本和可变成本),低于这一点就会发生亏损,而超过这一点就会产生利润。
一个简单的盈亏平衡点结构图。横轴代表产量,纵轴代表销售额或成本。假定销售额与销售量成正比,那么销售线是一条起于原点的直线。
总成本线在等于固定成本的那一点与纵轴相交,且随着销售量的增加而成比例地表现为增长趋势。高于盈亏平衡点时,利润与销售额之比随每一售出的产品而增加。这是因为贡献呈一固定比率,而分摊固定成本的基础却扩大了。
1、一盈一亏的解法:(盈数+亏数)÷两次每人分配数的差
2、双盈的解法:(大盈-小盈)÷两次每人分配数的差
3、双亏的解法:(大亏-小亏)÷两次每人分配数的差
一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数、一盈一平或一亏一平=盈数或亏数÷两次分配的差=份数、再求总数量。
每次分的数量*份数+盈=总数量。每次分的数量*份数-亏=总数量。物品数可由其中一种分法的份数和盈亏数求出。有些则不能用公式求出,需要用其他公式。
其它(高级):盈亏临界点--交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
1、一盈一亏的解法:(盈数+亏数)÷两次每人分配数的差
2、双盈的解法:(大盈-小盈)÷两次每人分配数的差
3、双亏的解法:(大亏-小亏)÷两次每人分配数的差
一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数、一盈一平或一亏一平=盈数或亏数÷两次分配的差=份数、再求总数量。
每次分的数量*份数+盈=总数量。每次分的数量*份数-亏=总数量。物品数可由其中一种分法的份数和盈亏数求出。有些则不能用公式求出,需要用其他公式。
其它(高级):盈亏临界点--交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。凡是研究盈和亏这一类算法的应用题就叫盈亏问题。